Как решать диофантово уравнение. Линейные диофантовы уравнения

Министерство образования и науки Республики Казахстан

Восточно-Казахстанская область

Направление: математическое моделирование экономических и социальных процессов.

Секция: математика

Тема: Решение диофантовых уравнений первой и второй степени

Жумадилов Эльдар,

Буркутова Амина,

ГУ «Экономический лицей»

Руководитель:

Дранная Наталия Александровна

ГУ «Экономический лицей»

Консультант:

Заведующий кафедрой математики и методики преподавания математики Семипалатинского государственного педагогического института, кандидат физико- математических наук, доцент

Жолымбаев Оралтай Муратханович

Усть-Каменогорск

Введение……………………………………………………………...….3

Глава 1.О диофантовых уравнениях.......................................................4

Глава 2.Методы решения.........................................................................6

2.1.Алгоритм Евклида......................................................................6

2.2.Цепная дробь...............................................................................8

2.3.Метод разложения на множители.............................................9

2.4.ИСпользование четности...........................................................10

2.5.Другие методы решения диофантовых уравнений.................10

Заключение...............................................................................................12

Список литературы..................................................................................13

Приложение.............................................................................................14

Введение

«Достопочтеннейший Дионисий, зная, что ты ревностно хочешь научиться решению задач, касающихся чисел, я попытался изложить природу их и могуще­ство, начиная с тех оснований, на которых покоится эта наука.

Может быть, этот предмет покажется тебе затруднительным, поскольку ты еще с ним незнаком, а начинающие не склонны надеяться на успех. Но он станет тебе удобопонятным благодаря твоему усердию и моим пояснениям, ибо страстная любовь к науке помогает быстро воспринять учение»

Таким посвящением открывается «Арифметика» Диофанта Александрий­ского.

Диофант представляет одну из занимательных загадок в истории математики. Мы не знаем, кем был Диофант, точные года его жизни, нам не известны его предшественники, которые работали бы в той же области, что и он.

На могиле Диофанта есть стихотворение-загадка, решая которую нетрудно подсчитать, что Диофант прожил 84 года. О времени жизни Диофанта мы можем судить по работам французского исследователя науки, Поля Таннри, и это, веро­ятно, середина 3 в.н.э.

Наиболее интересным представляется творчество Диофанта. До нас дошло 7 книг из 13, которые были объединены в “Арифметику”.

В этой книге Диофант (3 век) суммировал и расширил накопленный до него опыт решения неопределенных алгебраических уравнений в целых или рацио­нальных числах. С тех пор эти уравнения стали называться диофантовыми.

Вот примеры таких уравнений: х 2 +у 2 =z 2 , х 2 = у 3 +5у + 7.

Интерес к диофантовым уравнениям связан, видимо, с самой природой чело­века – сохранившиеся документы обнаруживают его следы в глубине тысячеле­тий. Еще в Древнем Вавилоне занимались поисками пифагоровых троек – цело­численных решений уравнения

х 2 +у 2 =z 2 .

Диофантовы уравнения позволяют решать алгебраические задачи в целых числах. «Арифметика» Диофанта легла в основу теории чисел нового времени.

Цель данного исследования: найти различные методы решения неопределенных уравнений.

Задачи исследования: научиться решать неопределенные уравнения первой и второй степени с помощью алгоритма Евклида, с помощью цепных дробей или разложением уравнения на множители

Глава 1. О диофантовых уравнениях.

Диофантовыми уравнениями называют алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неиз­вестных в уравнениях должно быть не менее двух (если не ограничиваться только целыми числами). Диофантовы уравнения имеют, как правило, много решений, поэтому их называют неопределенными уравнениями.

К диофантовым уравнениям приводят задачи, по смыслу которых неизвест­ные значения величин могут быть только целыми числами.

Рассмотрим одну задачу: За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200 и 500 р. Какими способами он может распла­титься? Для ответа на этот вопрос достаточно решить уравнение 2х +5у = 17 с двумя неизвестными х и у. Такие уравнения имеют бесконечное множество реше­ний. В частности, полученному уравнению отвечает любая пара чисел вида
. Для нашей практической задачи годятся только целые неотрицатель­ные значения х и у (рвать купюры на части не стоит). Поэтому приходим к поста­новке задачи: найти все целые неотрицательные решения уравнения 2х +5у = 17. Ответ содержит уже не бесконечно много, а всего лишь две пары чисел (1;3) и (6; 1).

Таким образом, особенности диофантовых задач заключаются в том, что: 1) они сводятся к уравнениям или систе­мам уравнений с целыми коэффициентами; 2) решения требуется найти только целые, часто натуральные.

Перед тем как рассмотреть методы решения неопределенных уравнений представим некоторые определения и утверждения, необходимые для дальнейшего изложения.

Делимость

Определение Пусть a,b  Z , b ≠ 0. Числа q  Z и r  {0,1,...,|b|-1} называются соответственно неполным частным и остатком от деления a на b, если выполнено равенство

При этом, если r = 0, то говорят, что a делится на b, или что b является делите­лем a (обозначение a b или b| a).

Диофантовы уравнения можно записать в виде

P(x 1 , x 2 , ..., x n) = 0,

где P(x 1 , ..., x n) - многочлен с целыми коэффициентами.

При исследовании диофантовых уравнений обычно ставятся следующие во­просы:

    имеет ли уравнение целочисленные решения;

    конечно или бесконечно множество его целочисленных решений;

    решить уравнение на множестве целых чисел, т. е. найти все его целочислен­ные решения;

    решить уравнение на множестве целых положительных чисел;

    решить уравнение на множестве рациональных чисел.

Отметим, что проблема решения уравнений в целых числах решена до конца только для уравнений с одним неизвестным, для уравнений первой степени и для уравнений второй степени с двумя неизвестными. Для уравнений выше второй степени с двумя или более неизвестными достаточно трудной является даже за­дача существования целочисленных решений. Например, не известно, имеет ли уравнение

x 3 + y 3 + z 3 = 30

хотя бы одно целочисленное решение. Более того, доказано, что в принципе не существует единого алгоритма, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения.

Глава 2. Методы решения.

2.1 Алгоритм Евклида.

Можно найти наибольший общий делитель натуральных чисел а и b, не раскладывая эти числа на простые множители, а применяя процесс деления с ос­татком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом деле­нии на остаток при втором делении и вести этот процесс до тех пор, пока не произойдет деление без остатка (т.к. остатки убывают, то это на каком-то шаге случится). Последний отличный от нуля остаток и есть искомый НОД (а, b).

Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств: если а>b, то

Здесь r 1 , …, r n – положительные остатки, убывающие с возрастанием но­мера. Из первого равенства следует, что общий делитель чисел а и b делит r 1 и общий делитель b и r 1 делит а, поэтому НОД (а, b) = НОД (b, r 1). Переходя к сле­дующим равенствам системы, получаем:

НОД(а, b) = НОД (b, r 1) = НОД (r 1, r 2) = …

…= НОД (r n -1 , r n) = НОД (r n , 0) = r n .

Таким образом, решая диофантовы уравнения первой степени ax + by = с, можно применять следующие теоремы:

Теорема1.. Если НОД (a, b) = 1, то уравнение ax + by = 1 имеет, по меньшей мере, одну пару (x, y) целого решения.

Теорема 2. Если НОД (a, b) = d > 1, и число с не делится на d, то уравнение ах + by = с не имеет целого решения.

Доказательство. Предположим, что уравнение ах + by = с имеет целое реше­ние (х 0 , y 0). Так как, аd, bd, то получим, что с = (ах + by)d. Это противоречит условиям теоремы и тем самым теорема доказана.

Теорема 3. Если НОД (a, b) = 1,то все целые решения уравнения ах + by = с опре­деляются формулой:

х = х 0 с + bt

Здесь (х 0 , y 0) – целое решение уравнения ах + by = 1, а t – произвольное целое число.

Пример 1. Решить в целых числах уравнение 54х + 37у = 1.

По алгоритму Евклида а = 54, b = 37. Подставляем данные под алгоритм и получаем:

54=371+17, остаток от деления 17 = 54-371

37 = 172+3 , 3 = 37-172

17 = 35+2 , 2 = 17- 35

3 = 21+1 , 1 = 3 - 21

После нахождения единицы выражаем через неё значения а и b:

1 = 3 – (17-35);

1 = 17 - (37- 172) 4;

1 = 17 - 374+178;

1 = 179 – 374;

1 = (54- 371) 9 - 374;

1 = 549 - 379 - 374;

Следовательно, х 0 = 9, у 0 = -13. Значит, данное уравнение имеет следующее решение
.

Пример 2. Требуется найти целое решение уравнения 15x + 37y = 1.

1-й метод. Воспользуемся разложением единицы:

1 = 15*5 + 37*(-2).Ответ: x = 5, y = -2.

2-й метод. Применяя алгоритм Евклида, имеем: 37 = 15*2 + 7, 15 = 2*7 + 1. Отсюда 1 = 15 – 2*7 = 15 – 2(37 – 15*2) = 15*5 + (-2)*37. Тогда x о = 5, y о = - 2. Общее решение уравнения есть система .

Пример 3 . В уравнении 16x + 34y = 7, НОД (16, 34) = 2 и 7 не делится на 2,то нет целых решений.

2.2 Цепная дробь

Одним из применений алгоритма Евклида является представление дроби в виде

Где q 1 – целое число, а q 2 , … ,q n – натуральные числа. Такое выражение на­зывается цепной (конечной непрерывной) дробью.

Уравнение:

с взаимно простыми коэффициентами a и b имеет решение

,
,

где
- предпоследняя подходящая дробь к цепной дроби, в которую раскладывается дробь .

Доказательство:

Если для заданной цепной дроби с последовательными частными q 1 , q 2 ,…,q n несократимые дроби

, , …,

являются результатами свертывания подходящих дробей
,
, и т.д. , порядка 1, 2, …, n соответственно,то

,
, …, n.

При k = n получаем:

,

Где - последняя подходящая дробь к цепной дроби, в которую раскладывается дробь . Так как дроби и несократимы, то , и

.

Умножая обе части последнего равенства на (-1) n , имеем

То есть пара чисел , , где n-порядок цепной дроби, является решением уравнения .

Пример. Для перевозки большого количества контейнеров по 170 кг и по 190 кг выделены трехтонные машины. Можно ли ими загружать машины полно­стью?

Решение:

Пусть х и у количество контейнеров по 170 и 190 кг соответственно, тогда имеем уравнение

170х+190у=3000

После сокращения на 10 уравнение выглядит так,

Для нахождения частного решения воспользуемся разложением дроби в цепную дробь

Свернув предпоследнюю подходящую к ней дробь в обыкновенную

Частное решение данного уравнения имеет вид

х 0 = (-1) 4 300*9=2700, у 0 =(-1) 5 300*8=-2400,

а общее задается формулой

х=2700-19k, y= -2400+17k.

откуда получаем условие на параметр k

Т.е. k=142, x=2, y=14. .

2.3 Метод разложения на множители

Данный метод и все последующие применяются к решению диофантовых уравнений второй степени.

Задача 1.

Решение. Запишем уравнение в виде

(x - 1)(y - 1) = 1.

Произведение двух целых чисел может равняться 1 только в том случае, когда оба они равны 1. Т. е. исходное уравнение равносильно совокупности

с решениями (0,0) и (2,2).

2.4 Использование четности

Задача 2. Решить в простых числах уравнение

x 2 - 2y 2 = 1.

Решение. Рассмотрим два случая в зависимости от четности переменной x.

a) Пусть x - нечетное число. Подстановка x = 2t + 1 приводит исходное уравне­ние к виду

(2t + 1) 2 - 2y 2 = 1,

2y 2 = 4t(t + 1).

Следовательно, 2 | y 2 . Так как y - простое число, то y = 2. Отсюда

b) Пусть x - четное число. Так как x - простое число, то x = 2. Следовательно, т. е. уравнение неразрешимо в простых числах.

Следовательно, уравнение имеет в классе простых чисел единственное реше­ние (3;2).

2.5 Другие методы решения диофантовых уравнений

Задача 3. Доказать, что уравнение

x 2 - 2y 2 = 1

имеет бесконечно много решений в натуральных числах.

Решение. Нетрудно заметить, что (3,2) - одно из решений исходного уравне­ния. С другой стороны из тождества

(x 2 + 2y 2) 2 - 2(2xy) 2 = (x 2 - 2y 2) 2

следует, что если (x, y) - решение данного уравнения, то пара (x 2 + 2y 2 , 2xy) также явля­ется его решением. Используя этот факт, рекуррентно определим бесконеч­ную последовательность (x n , y n) различных решений исходного уравнения:

(x 1 , y 1) = (3,2) и x n +1 = x n 2 + 2y n 2 , y n +1 = 2x n y n , n  N * .

Задача 4. Доказать, что уравнение

x(x + 1) = 4y(y + 1)

неразрешимо в целых положительных числах.

Решение. Нетрудно заметить, что исходное уравнение равносильно уравнению

x 2 + x + 1 = (2y + 1) 2 .

Следовательно, x 2

Задача 5. Решить в целых числах уравнение

x + y = x 2 - xy + y 2 .

Решение. Положим t = x + y. Так как

то должно выполняться неравенство откуда t  .

Заключение:

Современное обозначение непрерывных дробей предложил выдающийся учёный Христиан Гюйгенс (1629-1695).

К цепным дробям Гюйгенс обратился при построении планетария в Париже. Он хотел получить наилучшее приближение для отношения периодов обращения планет. Эти отношения и отношения чисел зубцов соответствующих связанных между собой шестерён планетария должны были совпадать. Но числа зубцов шестерен по техническим причинам не могут быть очень большими. Необходимо было так их подобрать, чтобы полученные отношения как можно меньше отличались от истинных. Гюйгенс обратился к цепным дробям и с их помощью нашел решение стоящей перед ним задачи.

В заключении отметим преимущества и недостатки цепных дробей по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой счисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Данная тема актуальна тем, что диофантовы уравнения используются так же в инженерии, биологии и т.д. Например, при подсчете хромосом первого поколе­ния.

Для начала выберем пять случайных решений: 1=

Хромосома

1-е поколение хромосом и их содержимое.

Главное свойство диофантовых уравнений в том, что мы не перебираем все варианты решений подряд, а приближаемся от случайно выбранных решений к лучшим.

Список литературы

    Журнал «Квант» 1970г. №7

    «Энциклопедия юного математика» 520 с.

    Виленкин Н.Я. «За страницами учебника математики» (10-11 класс).- Москва: «Просвещение» 1996-320 с.

    http:// festival .1 september . ru / articles /417558/

    Шыныбеков Н.А. «Алгебра 8» Алматы «Атамұра» 2004-272 с.

    И.Н.Сергеев «Примени математику» 1989г.- 240 с.

  1. http:// ilib . mirror 1. mccme . ru / djvu / serp - int _ eq . htm

    Кожегельдинов С.Ш. «Некоторые элементы теории диофантовых уравнений в упражнениях и задачах»

    Пичугин Л.Ф. «За страницами учебника алгебры», М., 1990г., 224с.

    Глейзер Г.И. «История математики в школе 10-11», 351с

    Гусев В.А., Орлов А.И. и др. «Внеклассная работа по математике в 6-8 классах», М., 1984г., 286 с.

    Петраков И.А. «Математика для любознательных», М., 2000г. 256с.

    http://bse.sci-lib.com/article028554.html

    http://bars-minsk.narod.ru/teachers/diofant.html

Приложение

    Решить в целых числах уравнение 127x - 52y + 1 = 0. Ответ: x = 9 + 52t, y = 22 + 127t, t  Z .

    Решить в целых числах уравнение 107х + 84у = 1.

    Решить в целых числах уравнение 3x 2 + 4xy - 7y 2 = 13. Указание. Применить разложение на множители.
    Ответ: (2,1), (-2,-1).

    Доказать, что уравнение y 2 = 5x 2 + 6 не имеет целочисленных решений.
    Указание. Рассмотреть уравнение по модулю 4.

    Доказать, что уравнение x 2 - 3y 2 = 1 имеет бесконечно много решений в целых числах.
    Указание. Использовать реккурентное соотношение между решениями.

    Решить уравнение: 17х +13у=5.

    Докажите, что любую денежную сумму, выраженную целым числом рублей, большим 7, можно уплатить без сдачи, имея лишь трёхрублёвые и пятирублёвые купюры в достаточном количестве.

    Требуется разлить 20,5 литра сока в банки по 0,7 литра и 0,9 литра так, чтобы все банки оказались полными. Сколько каких банок надо заготовить? Какое наименьшее количество банок при этом может понадобиться?

    Причем, с тремя неизвестными, а также решают...

  1. Генетические алгоритмы и их практическое применение

    Задача >> Информатика

    Strategies). Ближе ко второму полюсу - системы, которые... идеях адаптации и эволюции. Степень мутации в данном случае... математика Диофанта.26 Рассмотрим диофантово уравнение : a+2b+3c+4d ... Коэффициенты выживаемости первого поколения хромосом (набора решений ) Так...

  2. Выдающаяся роль Леонарда Эйлера в развитии алгебры геометрии и теории чисел

    Дипломная работа >> Исторические личности

    ... решении уравнений . Он указывал, что решение уравнений второй , третьей и четвертой степеней приводится к уравнениям соответственно первой , второй и третьей степени ; эти последние уравнения ... целочисленном решении систем диофантовых уравнений высших степеней и...

  3. Моделирование парожидкостного равновесия в четырехкомпонентной смеси ацетонтолуолн-бутанолдиметилформамид

    Дипломная работа >> Химия

    Являются составляющими единой системы диофантовых уравнений и взаимно дополняют... Эффективность принимаемых решений в значительной степени определяется особенностями... молекулу первого компонента, другой – молекулу второго компонента. Согласно уравнению ...

Чтобы решить линейное диофантово уравнение, нужно найти значения переменных «x» и «y», которые являются целыми числами. Целочисленное решение сложнее обычного и требует определенного набора действий. Сначала необходимо вычислить наибольший общий делитель (НОД) коэффициентов, а затем найти решение. Если вы нашли одно целочисленное решение линейного уравнения, можно применить простой шаблон, чтобы найти бесконечное множество других решений.

Шаги

Часть 1

Как записать уравнение

    Запишите уравнение в стандартной форме. Линейное уравнение - это уравнение, в котором показатели степени переменных не превышают 1. Чтобы решить такое линейное уравнение, сначала запишите его в стандартной форме. Стандартная форма линейного уравнения выглядит так: A x + B y = C {\displaystyle Ax+By=C} , где A , B {\displaystyle A,B} и C {\displaystyle C} - целые числа.

    Упростите уравнение (если можно). Когда вы запишете уравнение в стандартной форме, посмотрите на коэффициенты A , B {\displaystyle A,B} и C {\displaystyle C} . Если у этих коэффициентов есть НОД, разделите на него все три коэффициента. Решение такого упрощенного уравнения также будет решением исходного уравнения.

    Проверьте, можно ли решить уравнение. В некоторых случаях можно сразу заявить, что уравнение не имеет решений. Если коэффициент «С» не делится на НОД коэффициентов «А» и «В», у уравнения нет решений.

    Часть 2

    Как записать алгоритм Евклида
    1. Уясните алгоритм Евклида. Это ряд повторных делений, в котором предыдущий остаток используется как следующий делитель. Последний делитель, который делит числа нацело, является наибольшим общим делителем (НОД) двух чисел.

      Примените алгоритм Евклида к коэффициентам «A» и «B». Когда вы запишете линейное уравнение в стандартной форме, определите коэффициенты «A» и «B», а затем примените к ним алгоритм Евклида, чтобы найти НОД. Например, дано линейное уравнение 87 x − 64 y = 3 {\displaystyle 87x-64y=3} .

      Найдите наибольший общий делитель (НОД). Поскольку последним делителем было число 1, НОД 87 и 64 равен 1. Таким образом, 87 и 64 являются простыми числами по отношению друг к другу.

      Проанализируйте полученный результат. Когда вы найдете НОД коэффициентов A {\displaystyle A} и B {\displaystyle B} , сравните его с коэффициентом C {\displaystyle C} исходного уравнения. Если C {\displaystyle C} делится на НОД A {\displaystyle A} и B {\displaystyle B} , уравнение имеет целочисленное решение; в противном случае у уравнения нет решений.

    Часть 3

    Как найти решение с помощью алгоритма Евклида

      Пронумеруйте шаги вычисления НОД. Чтобы найти решение линейного уравнения, нужно использовать алгоритм Евклида в качестве основы процесса подстановки и упрощения.

      Обратите внимание на последний шаг, где есть остаток. Перепишите уравнение этого шага так, чтобы изолировать остаток.

      Изолируйте остаток предыдущего шага. Этот процесс представляет собой пошаговое «перемещение вверх». Каждый раз вы будете изолировать остаток в уравнении предыдущего шага.

      Сделайте замену и упростите. Обратите внимание, что уравнение шага 6 содержит число 2, а в уравнении шага 5 число 2 изолировано. Поэтому вместо «2» в уравнении шага 6 подставьте выражение шага 5:

      Повторите процесс подстановки и упрощения. Повторите описанный процесс, перемещаясь по алгоритму Евклида в обратном порядке. Каждый раз вы будете переписывать уравнение предыдущего шага и подставлять его в последнее полученное уравнение.

    1. Продолжите процесс подстановки и упрощения. Этот процесс будет повторяться до тех пор, пока вы не достигнете первоначального шага алгоритма Евклида. Цель процесса - записать уравнение с коэффициентами 87 и 64 исходного уравнения, которое нужно решить. В нашем примере:

      • 1 = 2 (18) − 7 (5) {\displaystyle 1=2(18)-7(5)}
      • 1 = 2 (18) − 7 (23 − 18) {\displaystyle 1=2(18)-7(23-18)} (подставили выражение из шага 3)
      • 1 = 9 (64 − 2 ∗ 23) − 7 (23) {\displaystyle 1=9(64-2*23)-7(23)} (подставили выражение из шага 2)
      • 1 = 9 (64) − 25 (87 − 64) {\displaystyle 1=9(64)-25(87-64)} (подставили выражение из шага 1)

Сегодня предлагаю поразмышлять над некоторой интересной математической задачкой.
А именно, давайте-ка для разминки решим следующее линейной уравнение:

«Чего сложного?» - спросите вы. Действительно, лишь одно уравнение и целых четыре неизвестных. Следовательно, три переменных есть свободные, а последняя зависит от оных. Так давайте выразим скорее! Например, через переменную , тогда множество решений следующее:

где - множество любых действительных чисел.

Что же, решение действительно оказалось слишком тривиальным. Тогда будем нашу задачу усложнять и делать её более интересной.

Вспомним про линейные уравнения с целыми коэффициентами и целыми корнями , которые, собственно, являются разновидностью диофантовых уравнений . Конкретно - наложим на наше уравнение соответствующие ограничение на целочисленность коэффициентов и корней. Коэффициенты при неизвестных у нас и так целые (), а вот сами неизвестные необходимо ограничить следующим:

где - множество целых чисел.

Теперь решение, полученное в начале статьи, «не проканает», так как мы рискуем получить как рациональное (дробное) число. Так как же решить это уравнение исключительно в целых числах?

Заинтересовавшихся решением данной задачи прошу под кат.

А мы с вами продолжаем. Попробуем произвести некоторые элементарные преобразования искомого уравнения:

Задача выглядит по-прежнему непонятной, в таких случаях математики обычно производят какую-нибудь замену. Давайте и мы с вами её бахнем:

Опа, мы с вами достигли интересного результата! Коэффициент при у нас сейчас равен единице , а это значит, что мы с вами можем выразить эту неизвестную через остальные неизвестные в этом уравнении без всяких делений (чем грешили в самом начале статьи). Сделаем это:

Обращу внимание, что это говорит нам о том, что какие бы не были (в рамках диофантовых уравнений), всё равно останется целым числом, и это прекрасно.

Вспоминая, что справедливо говорить, что . А подставив заместо полученный выше результат получим:

Тут мы также видим, что что какие бы не были , всё равно останется целым числом, и это по-прежнему прекрасно.

Тогда в голову приходит гениальная идея: так давайте же объявим как свободные переменные, а будем выражать через них! На самом деле, мы уже это сделали. Осталось только записать ответ в систему решений:

Теперь можно лицезреть, что в системе решений нигде нет деления , а это значит, что всегда решения будут целочисленными. Попробуем найти частное решение исходного уравнения, положив, к примеру, что :

Подставим в исходное уравнение:

Тождественно, круто! Давайте попробуем ещё разок на другом примере?

Тут мы видим отрицательный коэффициент, он может доставить нам изрядных проблем, так что давайте от греха избавимся от него заменой , тогда уравнение будет следующим:

Как мы помним, наша задача сделать такие преобразования, чтобы в нашем уравнении оказалась неизвестная с единичным коэффициентом при ней (чтобы затем выразить её через остальные без любого деления). Для этого мы должны снова что-нибудь взять «за скобку», самое быстрое - это брать коэффициенты из уравнения которые самые близкие к единице. Однако нужно понимать, что за скобку можно взять только лишь то число, которое обязательно является каким-либо коэффициентом уравнения (ни больше, ни меньше), иначе наткнемся на тавтологию/противоречие или дроби (иными словами, нельзя чтобы свободные переменные появились где-то кроме как в последней замене). Итак:

Введем замену , тогда получим:

Вновь возьмем за скобку и наконец получим в уравнении неизвестную с единичным коэффициентом:

Введем замену , тогда:

Выразим отсюда нашу одинокую неизвестную :

Из этого следует, что какие бы мы не взяли, все равно останется целым числом. Тогда найдем из соотношения :

Аналогичным образом найдем из соотношения :

На этом наша система решений созрела - мы выразили абсолютно все неизвестные, не прибегая к делению, тем самым показывая, что решение точно будет целочисленным. Также не забываем, что , и нам надо ввести обратную замену. Тогда окончательная система решений следующая:

Таким образом, осталось ответить на вопрос - а любое ли подобное уравнение можно так решить? Ответ: нет, если уравнение в принципе нерешаемо. Такое возникает в тех случаях, если свободный член не делится нацело на НОД всех коэффициентов при неизвестных. Иными словами, имея уравнение:

Для его решения в целых числах достаточно выполнение следующего условия:

(где - наибольший общий делитель).

Доказательство

Доказательство в рамках этой статьи не рассматривается, так как это повод для отдельной статьи. Увидеть его вы можете, например, в чудесной книге В. Серпинского «О решении уравнений в целых числах» в §2.

Резюмируя вышесказанное, выпишем алгоритм действий для решения линейных диофантовых уравнений с любым числом неизвестных:

В заключение стоит сказать, что также можно добавить ограничения на каждый член уравнения в виде неравенства на оного (тогда к системе решений добавляется система неравенств, в соответствии с которой нужно будет скорректировать ответ), а также добавить ещё чего-нибудь интересное. Ещё не стоит забывать и про то, что алгоритм решения является строгим и поддается записи в виде программы для ЭВМ.

С вами был Петр,
спасибо за внимание.

Алгебраические неравенства или их системы с рациональными коэффициентами, решения которых ищутся в интегральных или целых числах. Как правило, количество неизвестных в диофантовых уравнениях больше. Таким образом, они также известны как неопределенные неравенства. В современной математике указанное выше понятие применяется к алгебраическим уравнениям, решения которых ищутся в алгебраических целых числах некоторого расширения поля Q-рациональных переменных, поля p-адических и т. д.

Истоки данных неравенств

Исследования уравнений Диофанта находится на границе между теорией чисел и алгебраической геометрией. Поиск решений в целых переменных является одной из старейших математических задач. Уже в начале второго тысячелетия до н.э. древним вавилонянам удалось решить системы уравнений с двумя неизвестными. Эта отрасль математики в наибольшей степени процветала в Древней Греции. Арифметика Диофанта (примерно, 3-го века н.э.) является значимым и главным источником, который содержит различные типы и системы уравнений.

В этой книге Диофант предвидел ряд методов изучения неравенств второй и третьей степеней, которые были полностью развиты в XIX веке. Создание теории рациональных чисел этим исследователем Древней Греции привело к анализу логических решений неопределенных систем, которые систематически сопровождаются в его книге. Несмотря на то, что в его работе содержатся решения конкретных диофантовых уравнений, есть основания полагать, что он также был знаком с несколькими общими методами.

Изучение этих неравенств обычно связано с серьезными трудностями. Ввиду того, что в них присутствуют многочлены с целыми коэффициентами F (x,y1,…, y n). На основе этого, были созданы выводы, что нет единого алгоритма, с помощью которого можно было бы для любого заданного определить x, выполняется ли уравнение F (x, y 1 ,…., y n). Ситуация разрешима для y 1 , …, y n . Примеры таких многочленов могут быть записаны.

Простейшее неравенство

ax + by = 1, где a и b - относительно целые и простые числа, для него имеется огромное количество выполнений (если x 0, y 0 сформирован результат, то пара переменных x = x 0 + b n и y = y 0 -an , где n - произвольное, также будет рассматриваться как выполнение неравенства). Другим примером диофантовых уравнений служит x 2 + y 2 = z 2 . Положительные интегральные решения этого неравенства представляют собой длину малых сторон x, y и прямоугольных треугольников, а также гипотенузы z с целыми боковыми размерами. Эти числа известны как пифагорейские числа. Все триплеты относительно простых указанных выше переменных даются формулами x=m 2 - n 2 , y = 2mn, z = m 2 + n 2 , где m и n- целые и простые числа (m>n>0).

Диофант в своей «Арифметике» занимается поиском рациональных (не обязательно интегральных) решений специальных типов своих неравенств. Общая теория решения диофантовых уравнений первой степени была разработана К. Г. Башетом в 17 веке. Другие ученые в начале XIX века в основном изучали подобные неравенства типа ax 2 +bxy + cy 2 + dx +ey +f = 0, где a, b, c, d, e, и f общие, неоднородные, с двумя неизвестными второй степени. Лагранж использовал непрерывные дроби в своем исследовании. Гаусс для квадратичных форм разработал общую теорию, лежащую в основе решения некоторых типов.

В исследованиях этих неравенств второй степени значительные успехи были достигнуты только в XX веке. У А. Туэ было установлено, что диофантово уравнение a 0 x n + a 1 x n-1 y +…+a n y n =c, где n≥3, a 0 ,…,a n ,c - целые числа, а a 0 t n + … + a n не может иметь бесконечное количество целочисленных решений. Однако метод Туэ не получил должного развития. А. Бейкер создал эффективные теоремы, дающие оценки на выполнении некоторых уравнений такого рода. Б. Н. Делоне предложил другой метод исследования, применимый к более узкому классу этих неравенств. В частности, вид ax 3 + y 3 = 1 полностью разрешим этим способом.

Диофантовы уравнения: методы решения

Теория Диофанта имеет много направлений. Таким образом, хорошо известной проблемой в этой системе является гипотеза, согласно которой не существует нетривиальное решение диофантовых уравнений x n + y n = z n если n ≥ 3 (вопрос Ферма). Изучение целочисленных выполнений неравенства является естественным обобщением проблемы пифагорейских триплетов. Эйлер получил положительное решение задачи Ферма для n = 4. В силу этого результата она относится к доказательству отсутствующих целочисленных, ненулевых исследований уравнения, если n - это нечетное простое число.

Исследование, касающееся решения, не было завершено. Трудности с его выполнением связаны с тем, что простая факторизация в кольце алгебраических целых чисел не единственна. Теория дивизоров в этой системе для многих классов простых показателей n позволяет подтвердить справедливость теоремы Ферма. Таким образом, существующими методами и способами выполняется линейное диофантово уравнение с двумя неизвестными.

Виды и типы описываемых задач

Арифметика колец алгебраических целых чисел также используется во многих других задачах и решениях диофантовых уравнений. Например, такие методы были применены при выполнении неравенств вида N(a 1 x 1 +…+ a n x n) = m, где N(a) - норма a, и x 1 , …, x n найдены интегральные рациональные переменные. Этот класс включает уравнение Пелля x 2- dy 2 =1.

Значения a 1, …, a n которые появляются, эти уравнения подразделяют на два типа. Первый тип - так называемые полные формы - включают в себя уравнения, в которых среди a есть m линейно независимые числа над полем рациональных переменных Q, где m = , в которых присутствует степень алгебраических показателей Q (a1,…, a n) над Q. Неполными видами являются те, в которых максимальное количество a i меньше, чем m.

Полные формы проще, их исследование завершено, и можно описать все решения. Второй тип - неполные виды - сложнее, а разработка подобной теории еще не завершена. Такие уравнения изучаются с помощью диофантовых приближений, которые включают неравенство F(x,y)=C, где F (x,y) - многочлен степени n≥3 является неприводимым, однородным. Таким образом, можно предположить, что y i → ∞. Соответственно, если y i достаточно велико, то неравенство будет противоречить теореме Туэ, Зигеля и Рота, из которой выходит, что F(x,y)=C, где F- форма третьей степени или выше, неприводимая не может иметь бесконечное количество решений.

Данный пример составляет довольно узкий класс среди всех. Например, несмотря на их простоту, x 3 + y 3 + z 3 = N, а также x 2 +y 2 +z 2 +u 2 = N не входят в этот класс. Изучение решений является достаточно тщательно исследованной ветвью диофантовых уравнений, где в основе лежит представление квадратичными формами чисел. Лагранж создал теорему, которая гласит, что выполнение существует для всех естественных N. Любое натуральное число может быть представлено в виде суммы трех квадратов (теорема Гаусса), но оно не должно иметь вид 4 a (8K-1), где a и k неотрицательные целые показатели.

Рациональные или интегральные решения системы диофантового уравнения типа F (x 1 , …, x n) = a, где F (x 1 , …, x n) является квадратичной формой с целыми коэффициентами. Таким образом, согласно теореме Минковского-Хассе, неравенство ∑a ij x i x j = b где a ij и b рационально, имеет интегральное решение в действительных и p-адических числах для каждого простого числа p только тогда, когда оно разрешимо в этой структуре.

Из-за присущих трудностей изучение чисел с произвольными формами третьей степени и выше изучалось в меньшей степени. Главным методом выполнения является способ тригонометрических сумм. В данном случае число решений уравнения явно выписывается в терминах интеграла Фурье. После чего метод окружения используется для выражения количества выполнения неравенства соответствующих конгруэнций. Способ тригонометрических сумм зависит от алгебраических особенностей неравенств. Существует большое количество элементарных методов для решения линейных диофантовых уравнений.

Диофантов анализ

Отделение математики, предметом которого является исследование интегральных и рациональных решений систем уравнений алгебры методами геометрии, из той же сферы. Во второй половине XIX века появление этой теории чисел привело к изучению уравнений Диофанта из произвольного поля с коэффициентами, и решения рассматривались либо в нем, либо в его кольцах. Система алгебраических функций развивалась параллельно с числами. Основная аналогия между двумя, которая была подчеркнута Д. Гильбертом и, в частности, Л. Кронекером, привела к равномерному построению различных арифметических концепций, которые обычно называются глобальными.

Это особенно заметно, если изучаемые алгебраические функции над конечным полем констант являются одной переменной. Такие понятия, как теория полей классов, делитель, а также ветвление и результаты являются хорошей иллюстрацией вышеизложенного. Эта точка зрения была принята в системе диофантовых неравенств только позднее, а систематическое исследование не только с численными, но и с коэффициентами, которые являются функциями, началось только в 1950-х годах. Одним из решающих факторов в этом подходе было развитие алгебраической геометрии. Одновременное изучение полей чисел и функций, которые возникают как две одинаково важные стороны одного и того же субъекта, не только давало изящные и убедительные результаты, но приводило к взаимному обогащению двух тем.

В алгебраической геометрии понятием многообразия заменяется неинвариантный набор неравенств над данным полем K, а их решения заменяются рациональными точками со значениями в K или в конечном его расширении. Можно, соответственно, сказать, что фундаментальная задача диофантовой геометрии заключается в изучении рациональных точек алгебраического множества X(K), X при этом - определенные числа в поле K. Целочисленное выполнение имеет геометрический смысл в линейных диофантовых уравнениях.

Исследования неравенств и варианты выполнения

При изучении рациональных (или интегральных) точек на алгебраических многообразиях возникает первая проблема, заключающаяся в их существовании. Десятая задача Гильберта сформулирована как проблема нахождения общего метода решения этого вопроса. В процессе создания точного определения алгоритма и после того, как было доказано, что подобных выполнений для большого числа задач не существует, проблема приобрела очевидный отрицательный результат, и наиболее интересным вопросом является определение классов диофантовых уравнений, для которых существует указанная выше система. Наиболее естественным подходом, с алгебраической точки зрения, является так называемый принцип Хассе: начальное поле K изучается вместе с его пополнениями K v по всем возможным оценкам. Поскольку X(K) = X(K v) являются необходимым условием существования, а K точка учитывает, что множество X(K v) не пусты для всех v.

Важность заключается в том, что он сводит две проблемы. Вторая намного проще, она ​​разрешима известным алгоритмом. В частном случае, когда многообразие X проективно, лемма Гензеля и его обобщения делают возможным дальнейшее сокращение: проблему можно свести к изучению рациональных точек над конечным полем. Затем он решается строить концепцию либо путем последовательного исследования, либо более эффективными методами.

Последнее важное соображение состоит в том, что множества X(K v) являются непустыми для всех v, за исключением конечного числа, так что количество условий всегда конечное, и они могут быть эффективно проверены. Однако принцип Хассе не применим к кривым степени. Например, 3x 3 + 4y 3 =5 имеет точки во всех p-адических числовых полях и в системе но не имеет рациональных точек.

Этот способ послужил отправным пунктом для построения концепции, описывающей классы главных однородных пространств абелевых многообразий для выполнения «отклонения» от принципа Хассе. Оно описывается в терминах специальной структуры, которые могут быть связаны с каждым многообразием (группа Тейта-Шафаревича). Основная трудность теории заключается в том, что методы вычисления групп сложно получить. Эта концепция также была распространена на другие классы алгебраических многообразий.

Поиск алгоритма выполнения неравенств

Другая эвристическая идея, используемая при изучении диофантовых уравнений, заключается в том, что если число переменных, участвующих в множестве неравенств - велико, то система обычно имеет решение. Однако это очень трудно доказать для любого конкретного случая. Общий подход к проблемам этого типа использует аналитическую теорию чисел и основан на оценках тригонометрических сумм. Этот метод первоначально применялся к специальным видам уравнений.

Однако впоследствии было доказано с его помощью, что если форма нечетной степени - это F, в d и n переменных и с рациональными коэффициентами, то n достаточно велико по сравнению с d, таким образом, имеет рациональную точку проективная гиперповерхность F = 0. Согласно гипотезе Артина, этот результат верен, даже если n > d 2 . Это доказано только для квадратичных форм. Аналогичные проблемы могут быть заданы и для других полей. Центральной проблемой диофантовой геометрии является структура множества целых или рациональных точек и их изучение, а первый вопрос, который нужно уточнить, состоит в том, является ли это множество конечным. В этой задаче ситуация обычно имеет конечное количество выполнений, если степень системы намного больше, чем число переменных. Это и есть основное предположение.

Неравенства на линиях и кривых

Группа X(K) может быть представлена ​​как прямая сумма свободной структуры ранга r и конечной группы порядка n. С 1930-х годов изучается вопрос о том, ограничены ли эти числа на множестве всех эллиптических кривых над данным полем K. Ограниченность кручения n была продемонстрирована в семидесятых годах. Существуют кривые произвольного высокого ранга в функциональном случае. В числовом случае по-прежнему нет ответа на этот вопрос.

Наконец, гипотеза Морделла утверждает, что количество интегральных точек является конечным для кривой рода g>1. В функциональном случае эта концепция была продемонстрирована Ю. И. Маниным в 1963 году. Основным инструментом, используемым при доказательстве теорем конечности в диофантовой геометрии, является высота. Из алгебраических многообразий размерности выше единицы абелевы многообразия, которые являются многомерными аналогами эллиптических кривых, были наиболее тщательно изучены.

А. Вейль обобщил теорему о конечности числа образующих группы рациональных точек на абелевы многообразия любой размерности (концепция Морделла-Вейля), распространив ее. В 1960-х годах появилась гипотеза Берча и Суиннертона-Дайера, усовершенствовавшая эту и группу и дзета-функции многообразия. Числовые доказательства подтверждают эту гипотезу.

Проблема разрешимости

Задача нахождения алгоритма, с помощью которого можно определить, имеет ли какое-либо диофантово уравнение способ решения. Существенной особенностью поставленной задачи является поиск универсального метода, который был бы подходящим для любого неравенства. Такой метод также позволил бы решать указанные выше системы, так как он эквивалентен P21+⋯+P2k=0.п1= 0 , ... , PK= 0п = 0,...,пК = 0 или п21+ ⋯ + P2К= 0 . п12+⋯+пК2=0. Проблема нахождения такого универсального способа обнаружения решений для линейных неравенств в целых числах была поставлена ​​Д. Гильбертом.

В начале 1950-х годов появились первые исследования, направленные на доказательство не существования алгоритма решения диофантовых уравнений. В это время появилась гипотеза Дэвиса, в которой говорилось, что любое перечислимое множество также принадлежит греческому ученому. Поскольку примеры алгоритмически неразрешимых множеств известны, но являются рекурсивно перечислимыми. Следует, что гипотеза Дэвиса верна и проблема разрешимости этих уравнений имеет отрицательное выполнение.

После этого для гипотезы Дэвиса осталось доказать, что существует метод преобразования неравенства, которое также (или не имело) в то же время решение. Было показано, что такое изменение диофантового уравнения возможно, если оно с указанными двумя свойствами: 1) в любом решении этого типа v uu ; 2) для любого k существует выполнение, в котором присутствует экспоненциальный рост.

Пример линейного диофантового уравнения этого класса завершил доказательство. Задача о существовании алгоритма разрешимости и распознавания в рациональных числах этих неравенств считается по-прежнему важным и открытым вопросом, который не изучен в достаточной степени.

Линейные диофантовы уравнения

Исследовательская работа по алгебре

ученика 9 класса МОУ «Упшинская ООШ»

Антонова Юрия

«Если вы хотите научиться плавать, то

смело входите в воду, а если хотите

научиться решать задачи, то решайте их.»

Д.Пойя

Руководитель – Софронова Н.А .


Задача

Для настилки пола шириной в 3 метра имеются доски шириной в 11 см и 13 см. Сколько нужно взять досок того и другого размера?

Если х – число досок шириной в 11 см, а у – число досок шириной в 13 см, то нам надо решить уравнение:

11 х + 13 у = 300


Особенности уравнения 11 х + 13 у = 300: Коэффициенты 11, 13, 300 – целые числа. Число неизвестных превышает число уравнений. Решения данного уравнения х и у должны быть целыми положительными числам

Алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, в которых число неизвестных превышает число уравнений и для которых надо найти целые решения, называют неопределенными или диофантовыми, по имени греческого математика Диофанта .


Примеры диофантовых уравнений

1 . Найдите все пары целых чисел

x , y , для которых верно равенство

2 . Покажите, что уравнение

имеет бесконечное множество решений

целых числах


Цель работы:

Выяснить:

  • Какие методы с уществуют для решения диофантовых уравнений?

Задачи:

  • Найти и и зучить методы решения линейных диофантовых уравнений с двумя переменными.
  • Рассмотреть возможности теории линейных диофантовых уравнений.

Пифагоровы тройки

  • Неопределенные уравнения в целых числах решались еще до Диофанта. Большой интерес вызывало, например, алгебраическое уравнение x 2 + y 2 = z 2 , связывающее стороны x , у , z прямоугольного треугольника. Натуральные числа x , y и z , являющиеся решениями этого уравнения, называются 'пифагоровыми тройками' .

Уравнение Ферма

  • К работам Диофанта имеют непосредственное отношение и математические исследования французского математика Пьера Ферма. Считается, что именно с работ Ферма началась новая волна в развитии теории чисел. И одна из его задач - это знаменитое уравнение Ферма

х n + y n = z n


Ни один крупный математик не прошел мимо теории диофантовых уравнений.

Ферма, Эйлер, Лагранж, Гаусс, Чебышев оставили неизгладимый след в этой интересной теории.


1, (Каталана); ах 2 + bxy + су 2 + dx + еу + f = 0 , где а, b , с, d , е, f - целые числа, т. е. общее неоднородное уравнение второй степени с двумя неизвестными (П.Ферма, Дж. Валлис, Л. Эйлер, Ж. Лагранж и К.Гаусс) ' width='640'

Примеры неопределенных уравнений решаемых великими математиками 19-го и 20-го столетий: x 2 ny 2 = 1 , где n не является точным квадратом (Ферма, Пелля); x z y t = 1 , где z , t 1, (Каталана); ах 2 + bxy + су 2 + dx + еу + f = 0 , где а , b , с , d , е , f - целые числа, т. е. общее неоднородное уравнение второй степени с двумя неизвестными (П.Ферма, Дж. Валлис, Л. Эйлер, Ж. Лагранж и К.Гаусс)


Диофантовы уравнения в 20 веке

1900 год. Международный математический конгресс.

10-я проблема Гильберта

Задано Диофантово уравнение с некоторым числом неизвестных и рациональными целыми коэффициентами. Необходимо придумать процедуру, которая могла определить за конечное число операций – является ли уравнение разрешимым в рациональных целых числах.

Русский математик Юрий Матиясевич доказал :

10-ая проблема Гильберта неразрешима - требуемого в ней алгоритма не существует.


Всегда ли можно найти для конкретного неопределенного уравнения все целые решения или доказать отсутствие таковых?

  • Проблема решения уравнений в целых числах решена до конца только для уравнений первой степени с двумя или тремя неизвестными.
  • ДУ второй степени с двумя неизвестными решаются уже с большим трудом.
  • ДУ второй степени с числом неизвестных больше двух решены лишь в отдельных частных случаях, например уравнение x 2 + y 2 = z 2 .
  • ДУ степени выше второй имеют, как правило, лишь конечное число решений (в целых числах).
  • Для уравнений выше второй степени с двумя или более неизвестными достаточно трудной является даже задача существования целочисленных решений. Например, неизвестно, имеет ли уравнение

x 3 + y 3 + z 3 = 30 хотя бы одно целочисленное решение.

  • Для решения отдельных ДУ, а иногда и для конкретных уравнений, приходится изобретать новые методы. Очевидно, что алгоритма, который позволял бы находить решения произвольных ДУ не существует.

Линейные диофантовы уравнения

Общий вид:

ЛДУ с двумя переменными:

a х + by = c

ЛДУ с тремя переменными:

a х + by + cz = d


ЛДУ с двумя неизвестными

ЛДУ с двумя переменными:

a х + by = c

Решения:

x = х 0 - bt

у = у 0 + at

Однородные:

a х + by = 0

Решения:

x = - bt

у = at


Поиск частного решения

Методы решения:

  • Метод кратных.
  • Применение алгоритма Евклида.
  • Метод перебора.
  • Метод спуска.
  • Метод рассмотрения остатков от деления

Метод кратных

Решить уравнение 11 х + 2 у = 69

Ищем сумму, равную 69: 55 + 14 = 69 Частное решение уравнения

х 0 = 5, у 0 = 7


Применение алгоритма Евклида

Решить уравнение 4 х + 7 у = 16

  • Найдем НОД чисел 4 и 7 по алгоритму Евклида: НОД(4,7) = 1
  • Выразим число 1 через коэффициенты а = 4 и b =7, используя теорему о линейном разложении НОД:

НОД ( а, b ) = au + bv .

  • Получим: 1 = 4 ∙ 2 + 7 ∙ (-1) u = 2, v = -1
  • Частное решение уравнения: х 0 = 2 ∙ 16 = 32,

у 0 = -1 ∙ 16 = -16


Метод перебора

Решить уравнение 7 х + 12 у = 100

  • 7х + 12у = 100
  • 7х = 100 – 12у
  • 100 – 12у кратно 7

Частное решение уравнения: х 0 = 4, у 0 = 6

100-12у


Метод спуска: 3х+8у=60

Выразим

переменную х

через у

Выразим

переменную х

через t

Ответ:

Проверка:


Метод рассмотрения остатков от деления

  • Решить в целых числах уравнение 3х – 4у = 1
  • 3 х = 4 у + 1
  • Левая часть уравнения делится на 3, значит и правая должна делиться на 3. При делении на 3 могут получиться остатки 0, 1, и 2.
  • Рассмотрим 3 случая.

3 x = 4 ∙ 3p + 1 = 12 p + 1

y = 3p + 1

Не делится на 3

3 x = 4 ∙ (3p + 1) +1 = 12 p + 3

y = 3p + 2

Не делится на 3

3 x = 4 ∙ (3p + 2) +1 = 12 p + 9

3 x = 3 (4 p + 3)

x = 4 p + 3

Ответ:

Делится на 3

x = 4 p + 3 ; y = 3p + 2


Возможности теории ЛДУ Найти все целочисленные решения уравнения х 2 + 5y 2 + 34z 2 + 2ху - 10xz - 22уz =0


Что дала мне работа над проектом?

  • Получил представление о работе над исследовательским проектом.
  • Познакомился с историей развития диофантовых уравнений и биографией Диофанта.
  • Изучил методы решения ЛДУ с двумя и тремя неизвестными.
  • решил группу задач, которые носят практический характер, а также встречаются на олимпиадах, экзаменах за курс основной школы
  • Приобрел навыки решения нестандартных задач.

Думаю, что в последующем я продолжу изучение диофантовых уравнений второй степени и методов их решения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  • Математика в понятиях, определениях и терминах. Ч.1. Пособие для учителей. Под ред. Л.В.Сабинина. М., «Просвещение», 1978. -320 с. (Библиотека учителя математики.) На обороте тит.л.авт.: О.В.Мантуров, Ю.К.Солнцев, Ю.И.Сорокин, Н.Г.Федин.
  • Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка: Пособие для учащихся. – 4-е изд., перераб. и доп. - М.: Просвещение, 1984. – 160с., ил.
  • Н.П.Тучнин. Как задать вопрос? (О математическом творчестве школьников): Книга для учащихся. – М.: Просвещение, 1993. – 192с., ил.
  • С.Н.Олехник, Ю.В.Нестеренко, М.К.Потапов Старинные занимательные задачи. –М.: Дрофа, 2002. -176с., ил.
  • Я.И.Перельман. Занимательная алгебра. – М.: Наука, 1975г. – 200с., ил.
  • Электорнный ресурс: http :// www.yugzone.ru /x/ diofant-i-diofantovy-uravneniya / И.Г.Башмакова «Диофант и диофантовы уравнения».
  • Электорнный ресурс: http :// www.goldenmuseum.com /1612Hilbert_rus.html 10-я проблема Гильберта: история математического открытия (Диофант, Ферма, Гильберт, Джулия Робинзон, Николай Воробьев, Юрий Матиясевич).
  • Электорнный ресурс: http://ru.wikipedia.org/wiki/ Диофантовы уравнения.
  • Электорнный ресурс: http :// revolution.allbest.ru / mathematics /d00013924.html Белов Денис Владимирович Линейные диофантовы уравнения.
  • Электорнный ресурс: http :// revolution.allbest.ru / mathematics /d00063111.html Линейные диофантовы уравнении
  • Электорнный ресурс: http ://portfolio.1september.ru/work.php?id=570768 Зюрюкина Ольга. Неопределенные уравнения в целых числах или диофантовы уравнения.
  • Электорнный ресурс: http ://portfolio.1september.ru/work.php?id=561773 Арапов Александр. Диофант и его уравнения.
  • Электорнный ресурс: http :// ru.wikipedia.org / wiki / Алгоритм Евклида.
Поделитесь с друзьями или сохраните для себя:

Загрузка...